SUMMARY REPORT 840 WEST LAUREL BAY BOULEVARD (FORMERLY 139 WEST LAUREL BAY BOULEVARD) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 840 WEST LAUREL BAY BOULEVARD (FORMERLY 139 WEST LAUREL BAY BOULEVARD) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Multimedia Joint Venture CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	BACKGROUND INFORMATION UST REMOVAL AND ASSESSMENT PROCESS	.1
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
2.1 2.2 2.3	UST REMOVAL AND SOIL SAMPLING SOIL ANALYTICAL RESULTS GROUNDWATER SAMPLING	3
2.4 3.0	GROUNDWATER ANALYTICAL RESULTS	.5 .5
4.0	REFERENCES	. 5

Tables

Table 1	Laboratory Analytical Results - Soil
Table 2	Laboratory Analytical Results - Groundwater

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Report
- Appendix C Laboratory Analytical Report Groundwater
- Appendix D Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 139 Laurel Bay Boulevard* (MCAS Beaufort, 2013). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

On August 20 2012, a single 280 gallon heating oil UST was removed from the front landscaped bed area adjacent to the driveway at 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard). The former UST location is indicated on Figures 2 and 3 of the UST Assessment

Report (Appendix B). The UST was removed, cleaned, and shipped offsite for recycling. There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'7" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated May 15, 2014, SCDHEC requested an IGWA for 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D.

2.3 Groundwater Sampling

On May 20, 2015, a temporary monitoring well was installed at 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report

(Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 **PROPERTY STATUS**

Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 840 West Laurel Bay Boulevard (Formerly 139 West Laurel Bay Boulevard). This NFA determination was obtained in a letter dated February 22, 2016. SCDHEC's NFA letter is provided in Appendix D.

4.0 **REFERENCES**

Marine Corps Air Station Beaufort, 2013. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 139 Laurel Bay Boulevard, Laurel Bay Military Housing Area*, February 2013.

- Resolution Consultants, 2015. *Initial Groundwater Investigation Report May and June 2015 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, October 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1 Laboratory Analytical Results - Soil 840 West Laurel Bay Blvd (Formerly 139 West Laurel Bay Blvd) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 08/20/12						
Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)								
Benzene	0.003	0.000749						
Ethylbenzene	1.15	0.161						
Naphthalene	0.036	3.01						
Toluene	0.627	0.00256						
Xylenes, Total	13.01	0.00888						
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270D (mg/kg)							
Benzo(a)anthracene	0.66	ND						
Benzo(b)fluoranthene	0.66	ND						
Benzo(k)fluoranthene	0.66	ND						
Chrysene	0.66	ND						
Dibenz(a,h)anthracene	0.66	ND						

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 2.0 (SCDHEC, April 2013).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2 Laboratory Analytical Results - Groundwater 840 West Laurel Bay Blvd (Formerly 139 West Laurel Bay Blvd) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 05/21/15						
Volatile Organic Compounds Analyzed	Volatile Organic Compounds Analyzed by EPA Method 8260B (µg/L)								
Benzene	5	16.24	ND						
Ethylbenzene	700	45.95	ND						
Naphthalene	25	29.33	3.6						
Toluene	1000	105,445	ND						
Xylenes, Total	10,000	2,133	ND						
Semivolatile Organic Compounds Ana	lyzed by EPA Method 822	70D (µg/L)							
Benzo(a)anthracene	10	NA	ND						
Benzo(b)fluoranthene	10	NA	ND						
Benzo(k)fluoranthene	10	NA	ND						
Chrysene	10	NA	ND						
Dibenz(a,h)anthracene	10	NA	ND						

Notes:

(1) South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

(2) Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received				
	State Us	e Only	in a start and a start and a start a st	

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, Comma	anding Officer Attn: NRE	CAO (Craig Ehde)							
Owner Name (Corporation, Individual, Public Agency, Other)									
P.O. Box 55001 Mailing Address									
Beaufort,	South Carolina	29904-5001							
City	State	Zip Code							
843	228-7317	Craig Ehde							
Area Code	Telephone Number	Contact Person							

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita Facility Name or Company	- <u>y Housing Area, Marine Corps Air Station, Beaufort, SC</u> Site Identifier						
139 Laurel Bay B Street Address or State Ros	139 Laurel Bay Blvd., Laurel Bay Military Housing Area Street Address or State Road (as applicable)						
Beaufort,	Beaufort						
City	County						

Attachment 2

III. INSURANCE INFORMATION

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? **YES____ NO____** (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this ______ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

	LaurelBB
Product (ex Gas Kerosene)	Heating oil
Capacity(ex. 1k, 2k)	280 gal
Age	Late 1950s
Construction Material(ex. Steel, FRP)	Steel
Month/Year of Last Use	Mid 1980s
Depth (ft.) To Base of Tank	5'7"
Spill Prevention Equipment Y/N	No
Overfill Prevention Equipment Y/N	No
Method of Closure Removed/Filled	Removed
Date Tanks Removed/Filled	8/20/2012
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	Yes
	Product(ex. Gas, Kerosene)Capacity(ex. 1k, 2k)AgeAgeConstruction Material(ex. Steel, FRP)Month/Year of Last UseDepth (ft.) To Base of TankSpill Prevention Equipment Y/NOverfill Prevention Equipment Y/NMethod of Closure Removed/FilledDate Tanks Removed/FilledVisible Corrosion or Pitting Y/NVisible Holes Y/N

139

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 139LaurelBB was removed from the ground and disposed at a Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests)
 UST 139LaurelBB had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		139 LaurelBB
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
F	Was Pining Removed from the Ground? Y/N	No
L.		Yes
F.	Visible Corrosion or Pitting Y/N	
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
•		

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The	USTs	at	the	reside	ences	are (const	ructed	l of	sing	le w	all	steel	
and	forme	erly	con	itained	l fuel	oil	for	heatin	ıg.	These	UST	's we	ere	
inst	alled	d in	. the	e late	1950s	and	last	used	in	the m	id 1	980s	5.	

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		Х	
B. Were any petroleum odors detected in the excavation, soil borings,		х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		х	
If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

IX. SITE CONDITIONS

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

В.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
139 LaurelBB	Excav at fill end	Soil	Sandy	5'7"	8/20/12 1515 hrs	P. Shaw	
							1
8							
9							
10							
11							
12							
13							
14							
15			_				
16							
17							
18							
19							
20							

* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	<u>No</u>
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	"BIOdu R	ниет	
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, electric	rity	
	cable, fiber optic & st If yes, indicate the type of utility, distance, and direction on the site map.	orm o	irain
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		х
	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 139LaurelBB.

Picture 2: Excavation of UST 139LaureIBB.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	139LaurelBB				
Benzene	0.000749 mg/	kg			
Toluene	0.00256 mg/k	g			
Ethylbenzene	0.161 mg/kg				
Xylenes	0.00888 mg/k	g			
Naphthalene	3.01 mg/kg				
Benzo (a) anthracene	ND		 		
Benzo (b) fluoranthene	ND				
Benzo (k) fluoranthene	ND				
Chrysene	ND				
Dibenz (a, h) anthracene	ND				
TPH (EPA 3550)					
				 ·····	
CoC					
Benzene					
Toluene					
Ethylbenzene					
Xylenes					
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5		····		
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-5126-1 Client Project/Site: Laurel Bay Housing Peoject

For:

Environmental Enterprise Group 10179 Highway 78 Ladson, South Carolina 29456

Attn: Mr. Tom McElwee

Roxanne L Connor

Authorized for release by: 9/11/2012 9:07:32 AM Roxanne Connor Senior Project Manager roxanne.connor@testamericainc.com

Designee for

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Ken Hayes Project Manager I ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

l

ļ

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	15
Chronicle	17
Method Summary	19
Certification Summary	20
Chain of Custody	21
Receipt Checklists	23

Sample Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Peoject TestAmerica Job ID: 490-5126-1

MILL LINE

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-5126-1	139 Laurel Bay	Solid	08/20/12 15:15	08/28/12 14:39
490-5126-2	921 Barracuda	Solid	08/21/12 14:45	08/28/12 14:39
490-5126-3	414 Elderbrary	Solid	08/22/12 15:00	08/28/12 14:39
490-5126-4	323 Ash	Solid	08/23/12 15:15	08/28/12 14:39

Job ID: 490-5126-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-5126-1

Comments

No additional comments.

Receipt

The samples were received on 8/28/2012 2:39 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.5° C.

GC/MS VOA

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 490-5126-01 139 Laurel Bay (490-5126-1). Evidence of matrix interference is present.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 490-5126-02921 Barracuda (490-5126-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Matrix spikes for batch 16146 could not be recovered due to sample matrix interferences which required sample dilution. The associated laboratory control sample (LCS) met acceptance criteria. See LCS/LCSD

Method(s) 8260B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample(s): 139 Laurel Bay (490-5126-1).

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with batch 16529. See LCS/LCSD

Method(s) 8260B: Due to sample matrix effect on the internal standard (ISTD), a dilution was required for the following sample(s): 921 Barracuda (490-5126-2).

Method(s) 8260B: The following sample(s) was diluted due to the nature of the sample matrix: 921 Barracuda (490-5126-2). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 921 Barracuda (490-5126-2). Evidence of matrix interference is present.

No other analytical or quality issues were noted.

GC/MS Semi VOA No analytical or quality issues were noted.

Organic Prep No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Peoject

ł

k

Į.

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
x	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC/MS Ser	ni VOA
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
Ø	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: 139 Laurel Bay

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Collected: 08/20/12 15:15 Date Received: 08/28/12 14:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.000749	J	0.00211	0.000708	mg/Kg	10	08/29/12 10:00	08/29/12 14:15	1
Ethylbenzene	0.161		0.00211	0.000708	mg/Kg	0	08/29/12 10:00	08/29/12 14:15	1
Naphthalene	3.01		0.356	0.121	mg/Kg	-C-	08/29/12 09:49	08/30/12 15:50	1
Toluene	0.00256		0.00211	0.000782	mg/Kg	c	08/29/12 10:00	08/29/12 14:15	1
Xylenes, Total	0.00888		0.00528	0.000708	mg/Kg	R	08/29/12 10:00	08/29/12 14:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 130				08/29/12 10:00	08/29/12 14:15	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				08/29/12 09:49	08/30/12 15:50	1
4-Bromofluorobenzene (Surr)	372	X	70 - 130				08/29/12 10:00	08/29/12 14:15	1
4-Bromofluorobenzene (Surr)	104		70 - 130				08/29/12 09:49	08/30/12 15:50	1
Dibromofluoromethane (Surr)	107		70 - 130				08/29/12 10:00	08/29/12 14:15	1
Dibromofluoromethane (Surr)	90		70 - 130				08/29/12 09:49	08/30/12 15:50	1
Toluene-d8 (Surr)	157	x	70 - 130				08/29/12 10:00	08/29/12 14:15	1
Toluene-d8 (Surr)	103		70 - 130				08/29/12 09:49	08/30/12 15:50	1
Method: 8270D - Semivolatile Org	anic Compou	nds (GC/MS	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0853	0.0127	mg/Kg	ā	08/29/12 11:31	08/30/12 19:51	1
Acenaphthylene	ND		0.0853	0.0115	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Anthracene	ND		0.0853	0.0115	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Benzo[a]anthracene	ND		0.0853	0.0191	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Benzo[a]pyrene	ND		0.0853	0.0153	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Benzo[b]fluoranthene	ND		0.0853	0.0153	mg/Kg	(d)-	08/29/12 11:31	08/30/12 19:51	1
Benzo[g,h,i]perylene	ND		0.0853	0.0115	mg/Kg	100	08/29/12 11:31	08/30/12 19:51	1
Benzo[k]fluoranthene	ND		0.0853	0.0178	mg/Kg	10	08/29/12 11:31	08/30/12 19:51	1
Pyrene	ND		0.0853	0.0153	mg/Kg	10	08/29/12 11:31	08/30/12 19:51	1
Phenanthrene	0.0460	J	0.0853	0.0115	mg/Kg	QE.	08/29/12 11:31	08/30/12 19:51	1
Chrysene	ND		0.0853	0.0115	mg/Kg	10.	08/29/12 11:31	08/30/12 19:51	1
Dibenz(a,h)anthracene	ND		0.0853	0.00891	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Fluoranthene	ND		0.0853	0.0115	mg/Kg	13	08/29/12 11:31	08/30/12 19:51	1
Fluorene	ND		0.0853	0.0153	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Indeno[1,2,3-cd]pyrene	ND		0.0853	0.0127	mg/Kg	0	08/29/12 11:31	08/30/12 19:51	1
Naphthalene	ND		0.0853	0.0115	mg/Kg	\$	08/29/12 11:31	08/30/12 19:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	52		29 - 120				08/29/12 11:31	08/30/12 19:51	1
Terphenyl-d14 (Surr)	64		13 - 120				08/29/12 11:31	08/30/12 19:51	1
Nitrobenzene-d5 (Surr)	50		27 - 120				08/29/12 11:31	08/30/12 19:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	77		0.10	0.10	%			08/28/12 16:24	1

TestAmerica Job ID: 490-5126-1

Lab Sample ID: 490-5126-1 Matrix: Solid Percent Solids: 77.0

1

1 AL

Client Sample ID: 921 Barracuda

Date Collected: 08/21/12 14:45 Date Received: 08/28/12 14:39

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00224	0.000750	mg/Kg	4	08/29/12 10:00	08/30/12 14:22	1
Ethylbenzene	ND		0.114	0.0388	mg/Kg	11	08/29/12 09:49	08/30/12 15:21	1
Naphthalene	ND		0.285	0.0970	mg/Kg	-0	08/29/12 09:49	08/30/12 15:21	1
Toluene	ND		0.114	0.0422	mg/Kg	\$	08/29/12 09:49	08/30/12 15:21	1
Xylenes, Total	ND		0.285	0.0388	mg/Kg	n	08/29/12 09:49	08/30/12 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		70 - 130				08/29/12 10:00	08/30/12 14:22	1
1,2-Dichloroethane-d4 (Surr)	108		70 - 130				08/29/12 09:49	08/30/12 15:21	1
4-Bromofluorobenzene (Surr)	189	x	70 - 130				08/29/12 10:00	08/30/12 14:22	1
4-Bromofluorobenzene (Surr)	97		70 - 130				08/29/12 09:49	08/30/12 15:21	1
Dibromofluoromethane (Surr)	109		70 - 130				08/29/12 10:00	08/30/12 14:22	1
Dibromofluoromethane (Surr)	94		70 - 130				08/29/12 09:49	08/30/12 15:21	1
Toluene-d8 (Surr)	135	x	70 - 130				08/29/12 10:00	08/30/12 14:22	1
Toluene-d8 (Surr)	86		70 - 130				08/29/12 09:49	08/30/12 15:21	1
Method: 8270D - Semivolatile	Organic Compou	inds (GC/MS	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1	110		0.0707	0.0400			00/00/40 44.04	00/00/40 00.40	

Acenaphthene	ND		0.0707	0.0106	mg/Kg	Ð	08/29/12 11:31	08/30/12 20:12	1
Acenaphthylene	ND		0.0707	0.00950	mg/Kg	4	08/29/12 11:31	08/30/12 20:12	1
Anthracene	ND		0.0707	0.00950	mg/Kg	4	08/29/12 11:31	08/30/12 20:12	1
Benzo[a]anthracene	ND		0,0707	0.0158	mg/Kg	9	08/29/12 11:31	08/30/12 20:12	1
Benzo[a]pyrene	0.244		0.0707	0.0127	mg/Kg	\$	08/29/12 11:31	08/30/12 20:12	1
Benzo[b]fluoranthene	0.0354	J	0.0707	0.0127	mg/Kg	25	08/29/12 11:31	08/30/12 20:12	1
Benzo[g,h,i]perylene	0.0994		0.0707	0.00950	mg/Kg	0	08/29/12 11:31	08/30/12 20:12	1
Benzo[k]fluoranthene	ND		0.0707	0.0148	mg/Kg	0	08/29/12 11:31	08/30/12 20:12	1
Pyrene	ND		0.0707	0.0127	mg/Kg	0	08/29/12 11:31	08/30/12 20:12	1
Phenanthrene	ND		0.0707	0.00950	mg/Kg	¢1.	08/29/12 11:31	08/30/12 20:12	1
Chrysene	ND		0.0707	0.00950	mg/Kg	4	08/29/12 11:31	08/30/12 20:12	1
Dibenz(a,h)anthracene	ND		0.0707	0.00739	mg/Kg	47	08/29/12 11:31	08/30/12 20:12	1
Fluoranthene	ND		0.0707	0.00950	mg/Kg	12	08/29/12 11:31	08/30/12 20:12	1
Fluorene	ND		0.0707	0.0127	mg/Kg	17	08/29/12 11:31	08/30/12 20:12	1
Indeno[1,2,3-cd]pyrene	0.0831		0.0707	0.0106	mg/Kg	pi	08/29/12 11:31	08/30/12 20:12	1
Naphthalene	ND		0.0707	0.00950	mg/Kg	ø	08/29/12 11:31	08/30/12 20:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	48		29 - 120				08/29/12 11:31	08/30/12 20:12	1
Terphenyl-d14 (Surr)	58		13 - 120				08/29/12 11:31	08/30/12 20:12	1
Nitrobenzene-d5 (Surr)	45		27 - 120				08/29/12 11:31	08/30/12 20:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93		0.10	0.10	%			08/28/12 16:24	1

TestAmerica Job ID: 490-5126-1

Lab Sample ID: 490-5126-2 Matrix: Solid Percent Solids: 92.9

C

.

Client Sample ID: 414 Elderbrary

Date Collected: 08/22/12 15:00 Date Received: 08/28/12 14:39

Lab Sample ID: 490-5126-3 Matrix: Solid Percent Solids: 97.7

l

Ē

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00211	0.000708	mg/Kg	55-	08/29/12 10:00	08/29/12 15:13	1
Ethylbenzene	ND		0.00211	0.000708	mg/Kg	0	08/29/12 10:00	08/29/12 15:13	1
Naphthalene	ND		0.00528	0.00180	mg/Kg	p.	08/29/12 10:00	08/29/12 15:13	1
Toluene	ND		0.00211	0.000782	mg/Kg	42	08/29/12 10:00	08/29/12 15:13	1
Xylenes, Total	ND		0.00528	0.000708	mg/Kg	<u>نې</u>	08/29/12 10:00	08/29/12 15:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130				08/29/12 10:00	08/29/12 15:13	1
4-Bromofluorobenzene (Surr)	104		70 - 130				08/29/12 10:00	08/29/12 15:13	1
Dibromofluoromethane (Surr)	96		70 - 130				08/29/12 10:00	08/29/12 15:13	1
Toluene-d8 (Surr)	100		70 - 130				08/29/12 10:00	08/29/12 15:13	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0666	0.00994	mg/Kg	0	08/29/12 11:31	08/30/12 20:33	1
Acenaphthylene	ND		0.0666	0.00895	mg/Kg	o	08/29/12 11:31	08/30/12 20:33	1
Anthracene	ND		0.0666	0.00895	mg/Kg	a	08/29/12 11:31	08/30/12 20:33	1
Benzo[a]anthracene	ND		0.0666	0.0149	mg/Kg	32-	08/29/12 11:31	08/30/12 20:33	1
Benzo[a]pyrene	ND		0.0666	0.0119	mg/Kg	42-	08/29/12 11:31	08/30/12 20:33	1
Benzo[b]fluoranthene	ND		0.0666	0.0119	mg/Kg	12	08/29/12 11:31	08/30/12 20:33	1
Benzo[g,h,i]perylene	ND		0.0666	0.00895	mg/Kg	(3	08/29/12 11:31	08/30/12 20:33	1
Benzo[k]fluoranthene	ND		0.0666	0.0139	mg/Kg	45	08/29/12 11:31	08/30/12 20:33	1
Pyrene	ND		0.0666	0.0119	mg/Kg	0	08/29/12 11:31	08/30/12 20:33	1
Phenanthrene	ND		0.0666	0.00895	mg/Kg	85-	08/29/12 11:31	08/30/12 20:33	1
Chrysene	ND		0.0666	0.00895	mg/Kg	10-	08/29/12 11:31	08/30/12 20:33	1
Dibenz(a,h)anthracene	ND		0.0666	0.00696	mg/Kg	10	08/29/12 11:31	08/30/12 20:33	1
Fluoranthene	ND		0.0666	0.00895	mg/Kg	0	08/29/12 11:31	08/30/12 20:33	1
Fluorene	ND		0.0666	0.0119	mg/Kg	0	08/29/12 11:31	08/30/12 20:33	1
Indeno[1,2,3-cd]pyrene	ND		0.0666	0.00994	mg/Kg	0	08/29/12 11:31	08/30/12 20:33	1
Naphthalene	ND		0.0666	0.00895	mg/Kg	0	08/29/12 11:31	08/30/12 20:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	52		29 - 120				08/29/12 11:31	08/30/12 20:33	1
Terphenyl-d14 (Surr)	67		13 - 120				08/29/12 11:31	08/30/12 20:33	1
Nitrobenzene-d5 (Surr)	50		27 - 120				08/29/12 11:31	08/30/12 20:33	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	98		0.10	0.10	%			08/28/12 16:24	1

Client Sample ID: 323 Ash

Date Collected: 08/23/12 15:15 Date Received: 08/28/12 14:39

Lab Sample ID: 490-5126-4 Matrix: Solid Percent Solids: 76.2

p.

Method: 8260B - Volatile Organ	ic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00223	0.000747	mg/Kg	0	08/29/12 10:01	08/29/12 15:43	1
Ethylbenzene	0.0216		0.00223	0.000747	mg/Kg	0	08/29/12 10:01	08/29/12 15:43	1
Naphthalene	0.143		0.00558	0.00190	mg/Kg	0	08/29/12 10:01	08/29/12 15:43	1
Toluene	ND		0.00223	0.000825	mg/Kg	-0	08/29/12 10:01	08/29/12 15:43	1
Xylenes, Total	0.000765	J	0.00558	0.000747	mg/Kg	9	08/29/12 10:01	08/29/12 15:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 130				08/29/12 10:01	08/29/12 15:43	1
4-Bromofluorobenzene (Surr)	101		70 - 130				08/29/12 10:01	08/29/12 15:43	1
Dibromofluoromethane (Surr)	98		70 - 130				08/29/12 10:01	08/29/12 15:43	1
Toluene-d8 (Surr)	102		70 - 130				08/29/12 10:01	08/29/12 15:43	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0853	0.0127	mg/Kg	Ø	08/29/12 11:40	08/30/12 20:53	1
Acenaphthylene	0.0946		0.0853	0.0115	mg/Kg	¢	08/29/12 11:40	08/30/12 20:53	1
Anthracene	0.0946		0.0853	0.0115	mg/Kg	ø	08/29/12 11:40	08/30/12 20:53	1
Benzo[a]anthracene	0.0946		0.0853	0.0191	mg/Kg	-D	08/29/12 11:40	08/30/12 20:53	1
Benzo[a]pyrene	0.0564	J	0.0853	0.0153	mg/Kg	-D	08/29/12 11:40	08/30/12 20:53	1
Benzo[b]fluoranthene	0.0868		0.0853	0.0153	mg/Kg	-62	08/29/12 11:40	08/30/12 20:53	1
Benzo[g,h,i]perylene	ND		0.0853	0.0115	mg/Kg	÷	08/29/12 11:40	08/30/12 20:53	1
Benzo[k]fluoranthene	0.0358	J	0.0853	0.0178	mg/Kg	ø	08/29/12 11:40	08/30/12 20:53	1
Pyrene	0.213		0.0853	0.0153	mg/Kg	0	08/29/12 11:40	08/30/12 20:53	1
Phenanthrene	0.890		0.0853	0.0115	mg/Kg	0	08/29/12 11:40	08/30/12 20:53	1
Chrysene	0.126		0.0853	0.0115	mg/Kg	D	08/29/12 11:40	08/30/12 20:53	1
Dibenz(a,h)anthracene	ND		0.0853	0.00891	mg/Kg	0	08/29/12 11:40	08/30/12 20:53	1
Fluoranthene	0.160		0.0853	0.0115	mg/Kg	10	08/29/12 11:40	08/30/12 20:53	1
Fluorene	0.482		0.0853	0.0153	mg/Kg	D	08/29/12 11:40	08/30/12 20:53	1
Indeno[1,2,3-cd]pyrene	ND		0.0853	0.0127	mg/Kg	0	08/29/12 11:40	08/30/12 20:53	1
Naphthalene	0.172		0.0853	0.0115	mg/Kg	0	08/29/12 11:40	08/30/12 20:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	60		29 - 120				08/29/12 11:40	08/30/12 20:53	1
Terphenyl-d14 (Surr)	71		13 - 120				08/29/12 11:40	08/30/12 20:53	1
Nitrobenzene-d5 (Surr)	59		27 - 120				08/29/12 11:40	08/30/12 20:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	76		0.10	0.10	%			08/28/12 16:24	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-16146/6 Matrix: Solid Analysis Batch: 16146

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.00200	0.000670	mg/Kg			08/29/12 11:19	1
ND		0.00200	0.000670	mg/Kg			08/29/12 11:19	1
ND		0.00500	0.00170	mg/Kg			08/29/12 11:19	1
ND		0.00200	0.000740	mg/Kg			08/29/12 11:19	1
ND		0.00500	0.000670	mg/Kg			08/29/12 11:19	1
MB	МВ							
ecovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
94		70 - 130					08/29/12 11:19	1
107		70 - 130					08/29/12 11:19	1
94		70 - 130					08/29/12 11:19	1
101		70 - 130					08/29/12 11:19	1
	MB Result ND ND ND ND MB ecovery 94 107 94 107	MB MB Result Qualifier ND ND ND ND MB MB MB ecovery Qualifier 94 107 94 107	MB MB Result Qualifier RL ND 0.00200 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 MB MB ecovery Qualifier 94 70 - 130 107 70 - 130 94 70 - 130 101 70 - 130	MB MB Result Qualifier RL MDL ND 0.00200 0.000670 ND 0.00200 0.000670 ND 0.00500 0.00170 ND 0.00200 0.000670 ND 0.00200 0.000670 ND 0.00500 0.000670 MB MB B ecovery Qualifier Limits 94 70 - 130 107 70 - 130 94 70 - 130 101 70 - 130	MB MB Result Qualifier RL MDL Unit ND 0.00200 0.000670 mg/Kg ND 0.00200 0.000670 mg/Kg ND 0.00500 0.00170 mg/Kg ND 0.00200 0.000670 mg/Kg ND 0.00200 0.000740 mg/Kg ND 0.00500 0.000670 mg/Kg ND 0.00500 0.000670 mg/Kg ND 0.00500 0.000670 mg/Kg ND 0.00500 0.000670 mg/Kg MB MB B B B 94 70 - 130 107 70 - 130 94 70 - 130 101 70 - 130	MB MB Result Qualifier RL MDL Unit D ND 0.00200 0.000670 mg/Kg 0	MB MB Result Qualifier RL MDL Unit D Prepared ND 0.00200 0.000670 mg/Kg	MB MB Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.00200 0.000670 mg/Kg 08/29/12 11:19 08/29/12 11:19 ND 0.00200 0.000670 mg/Kg 08/29/12 11:19 08/29/12 11:19 ND 0.00200 0.000740 mg/Kg 08/29/12 11:19 08/29/12 11:19 ND 0.00200 0.000670 mg/Kg 08/29/12 11:19 08/29/12 11:19 ND 0.00500 0.000670 mg/Kg 08/29/12 11:19 08/29/12 11:19 ND 0.00500 0.000670 mg/Kg 08/29/12 11:19 08/29/12 11:19 ND 0.00500 0.000670 mg/Kg 08/29/12 11:19 08/29/12 11:19 MB MB B B B B B B Convert Prepared Analyzed 94 70 - 130 08/29/12 11:19 08/29/12 11:19 08/29/12 11:19 08/29/12 11:19 08/29/12 11:19 94 70 - 130

Lab Sample ID: LCS 490-16146/3 Matrix: Solid Analysis Batch: 16146

		Spike	LCS	LCS				%Rec.
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene		0.0500	0.04734		mg/Kg		95	75 - 127
Ethylbenzene		0.0500	0.04880		mg/Kg		98	80 - 134
Naphthalene		0.0500	0.05168		mg/Kg		103	69 - 150
Toluene		0.0500	0.04795		mg/Kg		96	80 - 132
Xylenes, Total		0.150	0.1468		mg/Kg		98	80 - 137
	100 100							

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	106		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 490-16146/4 Matrix: Solid Analysis Batch: 16146

and the second reaction			0.11.								-
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.04818		mg/Kg		96	75 - 127	2	50
Ethylbenzene			0.0500	0.04882		mg/Kg		98	80 - 134	0	50
Naphthalene			0.0500	0.04990		mg/Kg		100	69 - 150	4	50
Toluene			0.0500	0.04845		mg/Kg		97	80 - 132	1	50
Xylenes, Total			0.150	0.1467		mg/Kg		98	80 - 137	0	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1.2-Dichloroethane-d4 (Surr)	101		70 - 130								
4-Bromofluorobenzene (Surr)	100		70 - 130								
Dibromofluoromethane (Surr)	98		70 - 130								
Toluene-d8 (Surr)	100		70 - 130								

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Page 10 of 23

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

102

Lab Sample ID: MB 490-16529/6 Matrix: Solid Analysis Batch: 16529

Analyte Benzene

						Client Si	Analyzed	d Blank lotal/NA	
МВ	МВ								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
ND		0.00200	0.000670	mg/Kg			08/30/12 11:56	1	
		and a second second		and the second second			Company of the		-

Ethylbenzene	ND		0.00200	0.000670	mg/Kg		08/30/12 11:56	1
Naphthalene	ND		0.00500	0.00170	mg/Kg		08/30/12 11:56	1
Toluene	ND		0.00200	0.000740	mg/Kg		08/30/12 11:56	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg		08/30/12 11:56	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 130				08/30/12 11:56	1
4-Bromofluorobenzene (Surr)	102		70 - 130				08/30/12 11:56	1
Dibromofluoromethane (Surr)	95		70 - 130				08/30/12 11:56	1
Toluene-d8 (Surr)	105		70 - 130				08/30/12 11:56	1

Lab Sample ID: MB 490-16529/7 Matrix: Solid Analysis Batch: 16529

	INID	NID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	1	0.100	0.0335	mg/Kg			08/30/12 12:25	1
Ethylbenzene	ND		0.100	0.0335	mg/Kg			08/30/12 12:25	1
Naphthalene	ND		0.250	0.0850	mg/Kg			08/30/12 12:25	1
Toluene	ND		0.100	0.0370	mg/Kg			08/30/12 12:25	1
Xylenes, Total	ND		0.250	0.0335	mg/Kg			08/30/12 12:25	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					08/30/12 12:25	1
4-Bromofluorobenzene (Surr)	101		70 - 130					08/30/12 12:25	1
Dibromofluoromethane (Surr)	93		70 - 130					08/30/12 12:25	1

70 - 130

Lab Sample ID: LCS 490-16529/3 Matrix: Solid

Analysis Batch: 16529

Toluene-d8 (Surr)

the second second second			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			0.0500	0.04262		mg/Kg		85	75 - 127	
Ethylbenzene			0.0500	0.04570		mg/Kg		91	80 - 134	
Naphthalene			0.0500	0.04818		mg/Kg		96	69 - 150	
Toluene			0.0500	0.04573		mg/Kg		91	80 - 132	
Xylenes, Total			0.150	0.1373		mg/Kg		92	80 - 137	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

/ortecovery	Quanner	Linno
104		70 - 130
103		70 - 130
98		70 - 130
103		70 - 130
	104 103 98 103	104 103 98 103

Client Sample ID: Lab Control Sample Prep Type: Total/NA

08/30/12 12:25

TestAmerica Nashville 9/11/2012

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-16529/4 Matrix: Solid Analysis Batch: 16520

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Datch. 10323											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.04248		mg/Kg		85	75 - 127	0	50
Ethylbenzene			0.0500	0.04549		mg/Kg		91	80 - 134	0	50
Naphthalene			0.0500	0.04858		mg/Kg		97	69 - 150	1	50
Toluene			0.0500	0.04544		mg/Kg		91	80 - 132	1	50
Xylenes, Total			0.150	0.1364		mg/Kg		91	80 - 137	1	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	102		70 - 130								
4-Bromofluorobenzene (Surr)	108		70 - 130								

70 - 130

70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

97

103

64

Lab Sample ID: MB 490-16257/1-A Matrix: Solid Analysis Batch: 16603

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 16257

M	B MB							
Analyte Resu	It Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene N	D	0.0670	0.0100	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Acenaphthylene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Anthracene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Benzo[a]anthracene N	D	0.0670	0.0150	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Benzo[a]pyrene N	D	0.0670	0.0120	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Benzo[b]fluoranthene N	D	0.0670	0.0120	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Benzo[g,h,i]perylene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Benzo[k]fluoranthene N	D	0.0670	0.0140	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Pyrene N	D	0.0670	0.0120	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Phenanthrene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Chrysene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Dibenz(a,h)anthracene N	D	0.0670	0.00700	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Fluoranthene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Fluorene N	D	0.0670	0.0120	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Indeno[1,2,3-cd]pyrene N	D	0.0670	0.0100	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
Naphthalene N	D	0.0670	0.00900	mg/Kg		08/29/12 11:31	08/30/12 12:48	1
M	в мв							
Surrogate %Recover	y Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr) 6	8	29 - 120				08/29/12 11:31	08/30/12 12:48	1
Terphenyl-d14 (Surr) 8	5	13 - 120				08/29/12 11:31	08/30/12 12:48	1

Lab Sample ID: LCS 490-16257/2-A Matrix: Solid

Nitrobenzene-d5 (Surr)

Analysis Batch: 16603							Prep Batch: 16257
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.454		mg/Kg		87	38 - 120
Anthracene	1.67	1.462		mg/Kg		88	46 - 124
Benzo[a]anthracene	1.67	1.415		mg/Kg		85	45 - 120

27 - 120

Prep Type: Total/NA

08/29/12 11:31 08/30/12 12:48

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-16257/2-A Matrix: Solid

Analysis Batch: 16603									Prep Batch: 16257
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzo[a]pyrene			1,67	1.526		mg/Kg		92	45 - 120
Benzo[b]fluoranthene			1.67	1.500		mg/Kg		90	42 - 120
Benzo[g,h,i]perylene			1.67	1.522		mg/Kg		91	38 - 120
Benzo[k]fluoranthene			1.67	1.351		mg/Kg		81	42 - 120
Pyrene			1.67	1.434		mg/Kg		86	43 - 120
Phenanthrene			1.67	1.422		mg/Kg		85	45 - 120
Chrysene			1.67	1.450		mg/Kg		87	43 - 120
Dibenz(a,h)anthracene			1.67	1.534		mg/Kg		92	32 - 128
Fluoranthene			1.67	1.430		mg/Kg		86	46 - 120
Fluorene			1.67	1.392		mg/Kg		84	42 - 120
Indeno[1,2,3-cd]pyrene			1.67	1.535		mg/Kg		92	41 - 121
Naphthalene			1.67	1.476		mg/Kg		89	32 - 120
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	56		29 - 120
Terphenyl-d14 (Surr)	74		13 - 120
Nitrobenzene-d5 (Surr)	54		27 - 120

Lab Sample ID: 490-5116-D-1-B MS Matrix: Solid

Analysis Batch: 16603									Prep Batch: 1	6257
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	ND		2.21	1.650		mg/Kg	à	75	25 - 120	
Anthracene	ND		2.21	1.572		mg/Kg	-0-	71	28 - 125	
Benzo[a]anthracene	ND		2.21	1.529		mg/Kg	0	69	23 - 120	
Benzo[a]pyrene	ND		2.21	1.673		mg/Kg	0	76	15 - 128	
Benzo[b]fluoranthene	ND		2.21	1.660		mg/Kg	\$	75	12 - 133	
Benzo[g,h,i]perylene	ND		2.21	1.579		mg/Kg	0	71	22 - 120	
Benzo[k]fluoranthene	ND		2.21	1.432		mg/Kg	. é ·	65	28 - 120	
Pyrene	ND		2.21	1.586		mg/Kg	9	72	20 - 123	
Phenanthrene	ND		2.21	1.553		mg/Kg	ø	70	21 - 122	
Chrysene	ND		2.21	1.553		mg/Kg	2	70	20 - 120	
Dibenz(a,h)anthracene	ND		2.21	1.600		mg/Kg	d	72	12 - 128	
Fluoranthene	ND		2.21	1.573		mg/Kg	0	71	10 - 143	
Fluorene	ND		2.21	1.575		mg/Kg	0	71	20 - 120	
Indeno[1,2,3-cd]pyrene	ND		2.21	1.626		mg/Kg	0	73	22 - 121	
Naphthalene	ND		2.21	1.598		mg/Kg	0	72	10 - 120	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
2-Fluorobiphenyl (Surr)	48		29 - 120							
Terphenyl-d14 (Surr)	61		13 - 120							

Terphenyl-d14 (Surr) 61 27 - 120 Nitrobenzene-d5 (Surr) 44

E

27

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-5116-D-1-C MSD

Lab Sample ID: 490-5116-D-	1-C MSD						Client Sa	ample ID): Matrix Sp	oike Dup	olicate
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 16603									Prep	Batch:	16257
Come and Constant as The	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		2.16	1.714		mg/Kg	ô.	79	25 - 120	4	50
Anthracene	ND		2.16	1.602		mg/Kg	\$	74	28 - 125	2	49
Benzo[a]anthracene	ND		2.16	1.638		mg/Kg	\$	76	23 - 120	7	50
Benzo[a]pyrene	ND		2.16	1.752		mg/Kg	57	81	15 - 128	5	50
Benzo[b]fluoranthene	ND		2.16	1.700		mg/Kg	0	79	12 - 133	2	50
Benzo[g,h,i]perylene	ND		2.16	1.581		mg/Kg	0	73	22 - 120	0	50
Benzo[k]fluoranthene	ND		2.16	1.529		mg/Kg	0	71	28 - 120	7	45
Pyrene	ND		2.16	1.631		mg/Kg	ø	76	20 - 123	3	50
Phenanthrene	ND		2.16	1.613		mg/Kg	0	75	21 - 122	4	50
Chrysene	ND		2.16	1.620		mg/Kg	-0	75	20 - 120	4	49
Dibenz(a,h)anthracene	ND		2.16	1.654		mg/Kg	0	77	12 - 128	3	50
Fluoranthene	ND		2.16	1.641		mg/Kg		76	10 - 143	4	50
Fluorene	ND		2.16	1.626		mg/Kg	¢5	75	20 - 120	3	50
Indeno[1,2,3-cd]pyrene	ND		2.16	1.645		mg/Kg	48	76	22 - 121	1	50
Naphthalene	ND		2.16	1.735		mg/Kg	ö	80	10 - 120	8	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	52		29 - 120								
Terphenyl-d14 (Surr)	68		13 - 120								

Terphenyl-d14 (Surr) 68 Nitrobenzene-d5 (Surr) 51 27 - 120

Method: Moisture - Percent Moisture

Lab Sample ID: 490-5126-1 DU Matrix: Solid						Clier	t Sample ID: 139 Lauro Prep Type: Tot	el Bay tal/NA
Analysis Batch: 16055	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	77		77		%		0.3	20

QC Association Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Peoject

ł

÷.

GC/MS VOA

Analysis Batch: 16146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5126-1	139 Laurel Bay	Total/NA	Solid	8260B	16183
490-5126-3	414 Elderbrary	Total/NA	Solid	8260B	16183
490-5126-4	323 Ash	Total/NA	Solid	8260B	16183
LCS 490-16146/3	Lab Control Sample	Total/NA	Solid	8260B	10/20
LCSD 490-16146/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 400 16146/6	Method Black	Total/NA	Solid	8260B	
WID 490-10140/0	Method Blank	IOLAINIA	Solid	0200B	
Prep Batch: 16172					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5126-1	139 Laurel Bay	Total/NA	Solid	5035	
490-5126-2	921 Barracuda	Total/NA	Solid	5035	
Prep Batch: 16183					
rich Batelli Terree					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5126-1	139 Laurel Bay	Total/NA	Solid	5035	
490-5126-2	921 Barracuda	Total/NA	Solid	5035	
490-5126-3	414 Elderbrary	Total/NA	Solid	5035	
490-5126-4	323 Ash	Total/NA	Solid	5035	
Analysis Batch: 16529					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5126-1	139 Laurel Bay	Total/NA	Solid	8260B	16172
490-5126-2	921 Barracuda	Total/NA	Solid	8260B	16183
490-5126-2	921 Barracuda	Total/NA	Solid	8260B	16172
LCS 490-16529/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-16529/4	Lab Control Sample Dun	Total/NA	Solid	8260B	
MB 400-16520/6	Method Blank	Total/NA	Solid	8260B	
MB 490-16529/7	Method Blank	Total/NA	Solid	8260B	
GC/MS Semi VOA					
Prep Batch: 16257					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5116-D-1-B MS	Matrix Spike	Total/NA	Solid	3550C	11-1010
490-5116-D-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	
490-5126-1	139 Laurel Bay	Total/NA	Solid	3550C	
490-5126-2	921 Barracuda	Total/NA	Solid	3550C	
490-5126-3	414 Elderbrary	Total/NA	Solid	3550C	
490-5126-4	323 Ash	Total/NA	Solid	3550C	
LCS 490-16257/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-16257/1-A	Method Blank	Total/NA	Solid	3550C	
Analysis Batch: 16603		0			
Lab Sample ID	Client Sample ID	Pren Tune	Matrix	Method	Prop Batch
490-5116-D-1-B MS	Matrix Snike	Total/NA	Solid	82700	16257
490-5116-D-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	82700	16257
490-5126-1	139 Laurel Bay	Total/NA	Solid	82700	16257
400-5126-2	921 Barracuda	Total/NA	Solid	82700	16257
400 5126-2	414 Eldorbroom	Total/NA	Solid	92700	10237
490-5120-3	414 Elderbrary	Total/NA	Solid	02/00	10257
490-0120-4	Jab Castal Castal	Total/NA	Solid	82700	10257
LUS 490-16257/2-A	Lab Control Sample	Total/NA	Solid	82700	16257
MB 490-16257/1-A	Method Blank	Iotal/NA	Solid	82700	16257

TestAmerica Nashville 9/11/2012

QC Association Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Peoject

l

Ĕ

General Chemistry

Analysis Batch: 16055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-5126-1	139 Laurel Bay	Total/NA	Solid	Moisture	
490-5126-1 DU	139 Laurel Bay	Total/NA	Solid	Moisture	
490-5126-2	921 Barracuda	Total/NA	Solid	Moisture	
490-5126-3	414 Elderbrary	Total/NA	Solid	Moisture	
490-5126-4	323 Ash	Total/NA	Solid	Moisture	

Client Sample ID: 139 Laurel Bay

Date Received: 08/28/12 14:39

Lab Sample ID: 490-5126-1

Lab Sample ID: 490-5126-2

Lab Sample ID: 490-5126-3

Lab Sample ID: 490-5126-4

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 76.2

Percent Solids: 97.7

Percent Solids: 92.9

Matrix: Solid Percent Solids: 77.0

Date Collected: 08/20/12 15:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
fotal/NA	Prep	5035			16183	08/29/12 10:00	ML	TAL NSH
Total/NA	Analysis	8260B		1	16146	08/29/12 14:15	KK	TAL NSH
fotal/NA	Prep	5035			16172	08/29/12 09:49	ML	TAL NSH
fotal/NA	Analysis	8260B		1	16529	08/30/12 15:50	кк	TAL NSH
otal/NA	Prep	3550C			16257	08/29/12 11:31	AK	TAL NSH
fotal/NA	Analysis	8270D		1	16603	08/30/12 19:51	WS	TAL NSH
otal/NA	Analysis	Moisture		1	16055	08/28/12 16:24	ML	TAL NSH

Client Sample ID: 921 Barracuda

Date Collected: 08/21/12 14:45 Date Received: 08/28/12 14:39

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			16183	08/29/12 10:00	ML	TAL NSH	
Total/NA	Analysis	8260B		1	16529	08/30/12 14:22	КК	TAL NSH	
Total/NA	Prep	5035			16172	08/29/12 09:49	ML	TAL NSH	
Total/NA	Analysis	8260B		1	16529	08/30/12 15:21	КК	TAL NSH	
Total/NA	Prep	3550C			16257	08/29/12 11:31	AK	TAL NSH	
Total/NA	Analysis	8270D		1	16603	08/30/12 20:12	WS	TAL NSH	
Total/NA	Analysis	Moisture		1	16055	08/28/12 16:24	ML	TAL NSH	

Client Sample ID: 414 Elderbrary Date Collected: 08/22/12 15:00

Date Received: 08/28/12 14:39

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			16183	08/29/12 10:00	ML	TAL NSH
Total/NA	Analysis	8260B		1	16146	08/29/12 15:13	КК	TAL NSH
Total/NA	Prep	3550C			16257	08/29/12 11:31	AK	TAL NSH
Total/NA	Analysis	8270D		1	16603	08/30/12 20:33	WS	TAL NSH
Total/NA	Analysis	Moisture		1	16055	08/28/12 16:24	ML	TAL NSH

Client Sample ID: 323 Ash

Date Collected: 08/23/12 15:15 Date Received: 08/28/12 14:39

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			16183	08/29/12 10:01	ML	TAL NSH
Total/NA	Analysis	8260B		1	16146	08/29/12 15:43	КК	TAL NSH
Total/NA	Prep	3550C			16257	08/29/12 11:40	AK	TAL NSH
Total/NA	Analysis	8270D		1	16603	08/30/12 20:53	WS	TAL NSH
Total/NA	Analysis	Moisture		1	16055	08/28/12 16:24	ML	TAL NSH

TestAmerica Job ID: 490-5126-1

ľ

Ę

Ē

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Peoject

1

P

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

ľ

E

ŝ

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	ACIL		393	10-30-12
A2LA	ISO/IEC 17025		0453.07	12-31-13
Alabama	State Program	4	41150	05-31-13
Alaska (UST)	State Program	10	UST-087	07-24-13
Arizona	State Program	9	AZ0473	05-05-13
Arkansas DEQ	State Program	6	88-0737	04-25-13
California	NELAC	9	1168CA	10-31-12
Canadian Assoc Lab Accred (CALA)	Canada		3744	03-08-14
Colorado	State Program	8	N/A	02-28-13
Connecticut	State Program	1	PH-0220	12-31-13
Florida	NELAC	4	E87358	06-30-13
Illinois	NELAC	5	200010	12-09-12
lowa	State Program	7	131	05-01-14
Kansas	NELAC	7	E-10229	10-31-12
Kentucky	State Program	4	90038	12-31-12
Kentucky (UST)	State Program	4	19	09-15-13
Louisiana	NELAC	6	LA110014	12-31-12
Louisiana	NELAC	6	30613	06-30-13
Maryland	State Program	3	316	03-31-13
Massachusetts	State Program	1	M-TN032	06-30-13
Minnesota	NELAC	5	047-999-345	12-31-12
Mississippi	State Program	4	N/A	06-30-13
Montana (UST)	State Program	8	NA	01-01-15
Nevada	State Program	9	TN00032	09-30-12
New Hampshire	NELAC	1	2963	10-09-12
New Jersey	NELAC	2	TN965	06-30-13
New York	NELAC	2	11342	04-01-13
North Carolina DENR	State Program	4	387	12-31-12
North Dakota	State Program	8	R-146	06-30-13
Ohio VAP	State Program	5	CL0033	01-19-14
Oregon	NELAC	10	TN200001	04-30-13
Pennsylvania	NELAC	3	68-00585	06-30-13
Rhode Island	State Program	1	LAO00268	12-30-12
South Carolina	State Program	4	84009 (001)	02-28-13
South Carolina	State Program	4	84009 (002)	02-23-14
Tennessee	State Program	4	2008	02-23-14
Texas	NELAC	6	T104704077-09-TX	08-31-13
USDA	Federal		S-48469	11-02-13
Utah	NELAC	8	TAN	06-30-13
Virginia	NELAC	-3	460152	06-14-13
Washington	State Program	10	C789	07-19-13
West Virginia DEP	State Program	3	219	02-28-13
Wisconsin	State Program	5	998020430	08-31-13
Wyoming (UST)	A2LA	8	453.07	12-31-13

Nashville, TN COOLER RECEIPT FORM	
cooler Received/Opened On 8/28/2012 @ 0830	490,5100
. Tracking #	700-5126 Ch
ourier: FedEx IR Gun ID_14740456_	000002
. Temperature of rep. sample or temp blank when opened: 5.5 Degrees Celsius	
. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozer	YES NO. (NA)
. Were custody seals on outside of cooler?	ES.NONA
If yes, how many and where:	
. Were the seals intact, signed, and dated correctly?	ES NO NA
. Were custody papers inside cooler?	ES.NONA
certify that I opened the cooler and answered questions 1-6 (intial)	E
. Were custody seals on containers: YES K and Intact	YESNO.
Were these signed and dated correctly?	YESNO. NA
Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	er Other None
. Cooling process: Cooling process: Ice-pack Ice (direct contact) Dry id	ce Other None
. Cooling process: Ice-pack Ice (direct contact) Dry id 0. Did all containers arrive in good condition (unbroken)?	ce Other None
. Cooling process: Ice-pack Ice (direct contact) Dry id 0. Did all containers arrive in good condition (unbroken)? 1. Were all container labels complete (#, date, signed, pres., etc)?	Ce Other None
 Cooling process: Ice-pack Ice (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? 	Ce Other None
 Cooling process: Ice-pack Ice (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Were VOA vials received? 	Ce Other None
 Cooling process: Ice-pack Ice (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? 	Ce Other None CES.NONA CESNONA CESNONA CESNONA VESRONA
Cooling process: Ice-pack Ice (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Were VOA vials received? b. Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO	Ce Other None CESNONA CESNONA CESNONA CESNONA VESNONA YESNONA
Cooling process: Ice-pack Ice (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered guestions 7-14 (intial)	Ce Other None
Cooling process: Ice-pack lce (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Did all container labels and tags agree with custody papers? Did all container labels headspace present in any VOA vial? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) Ja. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level	Ce Other None CESNONA (TESNONA
Cooling process: Ice-pack lce (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Did all container labels and tags agree with custody papers? Were VOA vials received? b. Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) Sa. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used	Ce Other None CESNONA CESNONA CESNONA CESNONA YESONA YESONA YESONA YESNONA
Cooling process: Ice-pack lce (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? A. Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) Sa. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used S. Was residual chlorine present?	Ce Other None CESNONA CESNONA CESNONA CESNONA YESRONA YESNONA YESNONA YESNONA
Cooling process: Ice-pack lce (direct contact) Dry id Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Did all container labels and tags agree with custody papers? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present?	ce Other None ES.NONA (ESNONA (ESNONA (ESNONA YESNONA YESNONA (ESNONA YESNONA YESNONA
Cooling process: Cooling process: Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Did all container labels and tags agree with custody papers? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? Was residual chlorine prosent? Was residual chlorine prosent?	ce Other None ES.NONA (ESNONA (ESNONA (YESNONA YESNONA YESNONA YESNONA YESNONA YESNONA
Cooling process: Cooling process: Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO N If multiple coolers, seque Certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? Certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) Were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? 	e Other None ES.NONA ES.NONA ES.NONA YESNONA YESNONA ? YESNONA YESNONA YESNONA
Cooling process: Cooling process: Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Did all container labels and tags agree with custody papers? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? Were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? Were correct containers used for the analysis requested?	ce Other None CES.NONA CESNONA CESNONA CESNONA YESNONA YESNONA YESNONA YESNONA YESNONA YESNONA
Cooling process: Cooling process: Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO NA If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? Were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? Were correct containers used for the analysis requested? Was sufficient amount of sample sent in each container?	e Other None ES.NONA (ESNONA (ESNONA (YESNONA YESNONA ? YESNONA YESNONA YESNONA (ESNONA (YESNONA (YESNONA
Cooling process: Cooling process: Did all containers arrive in good condition (unbroken)? Were all container labels complete (#, date, signed, pres., etc)? Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO N If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? Were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? Was sufficient amount of sample sent in each container? Was sufficient amount of sample sent in each container?	Ce Other None

R

1

Client: Environmental Enterprise Group

Login Number: 5126 List Number: 1

Creator: Ford, Easton

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-5126-1

List Source: TestAmerica Nashville

ATTACHMENT A

MANAGEMENT NON	-HAZ	AR	DOL	JS	MA	NIF	ES	Т	
NON-HAZARDOUS MANIFEST 1. Generator's	US EPA ID No.	Ma	nifest Doc No).	2. Page 1	of			
3. Generator's Mailing Address: MCAS, BEAUFORT LAUREL BAY HOUSING BEAUFORT, SC 29907	Generator's Site	e Address (if di	fferent than mail	ng):	A. Manife	st Number MNA B. State	00316 Generator's	830 ID	1
4. Generator's Phone 843-228-6461 5. Transporter 1 Company Name	6.	US EPA ID) Number		C. State T	ransporter's	ID		
7. Transporter 2 Company Name	8.	D. Transporter's Phone 843-879-1 8. US EPA ID Number E. State Transporter's ID					79-041	.1	
9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY ROAD RIDGELAND, SC 29936	10.	F. Transporter's Phone IO. US EPA ID Number G. State Facility ID H. State Facility Phone 843-98				87-464	13		
11 Description of Waste Materials	10 10-2	- have	12. Conta	iners	13. Total	14. Unit	LM	ur Comme	inte
a. HEATING OIL TANKS FILLED WITH SAND	11 11 11	1	No.	Type Quantity Wt./Vol. I. Misc. C				sc. comme	mis
WM Profile # 102655	SC						(delegan)	1100	
WM Profile #	2			190	-11		1.21.0		
WM Profile #						HT L		1.2	
WM Profile #	and the	144	K Dispessi	Location			And the set	-1-18	
3. Additional Descriptions for Materials Listed Above			Cell Grid	Location			Level		
15. Special Handling Instructions and Additional Inform	Mation MALBAT	Ross- Bry	4) 9	210 14 E	IdERB	cuda' venny.	0)323	ASI	1-
Purchase Order # 16. GENERATOR'S CERTIFICATE: I hereby certify that the above-described materials are	EMI e not hazardous wa	ERGENCY CON astes as define	ed by CFR Par	t 261 or a	any applicable	e state law, h	nave been ful	ly and	
accurately described, classified and packaged and are Printed Name	in proper condition Signatu	n for transpor ure "On behal	tation accord	ing to ap	plicable regu	lations.	Month	Day	Year
Printed Name HShaw	Signatu	ure Al	UJ.	-		AA	Month	Day	Year 72
18. Transporter 2 Acknowledgement of Receipt of Ma Printed Name	Signate		IBO	10.	110	PH/2	Month	Day	Year
19. Certificate of Final Treatment/Disposal I certify, on behalf of the above listed treatment facilit applicable laws, regulations, permits and licenses on t	y, that to the best he dates listed abo	of my knowle	edge, the abov	ve-descri	bed waste w	as managed	in compliance	e with al	1
Printed Name	Signati	s materials co	overed by this	manifest	ul d		Month 70	Day	Year
White- TREATMENT, STORAGE, DISPOSAL FACILITY CO Pink- FACILITY USE ONLY	OPY Blue- Gold- T	GENERATOR #	#2 COPY #1 COPY	0	Ye	llow- GENER	ATOR #1 COP	Y	

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Description: BEALB139TW01WG20150521

Laboratory ID: QE21004-017 Matrix: Aqueous

Date Sampled:05/21/2015 0935

Date Received: 05/22/2015										
RunPrep Method15030B	Analytical Meth 826	od Dilution 0B 1	Analysis 05/27/207	Date Analys 15 1421 EH1	st Prep	Date	Batch 75865			
Parameter		Nu	CAS mber	Analytical Method	Result	Q	PQL	MDL	Units	Run
Benzene		71	-43-2	8260B	ND		5.0	0.21	ug/L	1
Ethylbenzene		100	-41-4	8260B	ND		5.0	0.17	ug/L	1
Naphthalene		91	-20-3	8260B	3.6	J	5.0	0.32	ug/L	1
Toluene		108	-88-3	8260B	ND		5.0	0.16	ug/L	1
Xylenes (total)		1330	-20-7	8260B	ND		5.0	0.19	ug/L	1
Surrogate	Q	Run 1 % Recovery	Acceptan Limits	ce						
Bromofluorobenzene		103	75-120)						
1,2-Dichloroethane-d4		101	70-120)						
Toluene-d8		109	85-120)						
Dibromofluoromethane		99	85-115	5						

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172 (803) 791-9700Fax (803) 791-9111www.shealylab.com

Level 1 Report v2.1

Client: AECOM - Resolution Consultants

Description: BEALB139TW01WG20150521

Laboratory ID: QE21004-017

Date Sampled:05/21/2015 0935

Matrix: Aqueous

Date Received: 05/22/2015

Run Prep Method 1 3520C	Analytical Method Dilution Anal 8270D (SIM) 1 05/27	ysis Date Analys /2015 2324 RB⊦	st Prep Date I 05/26/2015 15	Batch 43 75778			
Parameter	CAS Number	Analytical Method	Result Q	PQL	MDL	Units	Run
Benzo(a)anthracene	56-55-3	8270D (SIM)	ND	0.20	0.019	ug/L	1
Benzo(b)fluoranthene	205-99-2	8270D (SIM)	ND	0.20	0.019	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270D (SIM)	ND	0.20	0.024	ug/L	1
Chrysene	218-01-9	8270D (SIM)	ND	0.20	0.021	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270D (SIM)	ND	0.20	0.040	ug/L	1
Surrogate	Run 1 Acceț Q % Recovery Lir	otance nits					
2-Methylnaphthalene-d10	64 15	-139					
Fluoranthene-d10	72 23	-154					

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time Q = Surrogate failure ND = Not detected at or above the MDL $J = Estimated result < PQL and \ge MDL$ $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% N = Recovery is out of criteria L = LCS/LCSD failure S = MS/MSD failure Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Level 1 Report v2.1

Appendix D Regulatory Correspondence

DHEC

PROMOTE PROTECT PROSPER

Catherine B. Templeton, Director

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA

Laurel Bay Underground Storage Tank Assessment Reports for: *See attached sheet*

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email)

DHEC

PROMOLE PROLECT PROSPER

Catherine B. Templeton, Director

Attachment to: Krieg to Drawdy Subject: IGWA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks)

137 Laurel Bay Tank 2	387 Acorn
139 Laurel Bay	392 Acorn Tank 2
229 Cypress Tank 2	396 Acorn Tank 1
261 Beech Tank 1 -	396 Acorn Tank 2
261 Beech Tank 3	430 Elderberry
273 Birch Tank 1 🔹	433 Elderberry
273 Birch Tank 2	439 Elderberry
273 Birch Tank 3	440 Elderberry
276 Birch Tank 2 ·	442 Elderberry
278 Birch Tank 2	443 Elderberry
291 Birch Tank 2	444 Elderberry Tank 1
300 Ash •	445 Elderberry
304 Ash *	446 Elderberry
314 Ash Tank 1	448 Elderberry
314 Ash Tank 2	449 Elderberry
322 Ash Tank 2 +	451 Elderberry
323 Ash *	453 Elderberry
324 Ash *	456 Elderberry Tank 1
325 Ash Tank 1 *	456 Elderberry Tank 2
325 Ash Tank 2	458 Elderberry Tank 1
326 Ash -	458 Elderberry Tank 3
336 Ash •	464 Dogwood
339 Ash •	466 Dogwood
343 Ash Tank 1 *	467 Dogwood
344 Ash Tank 1 *	468 Dogwood
348 Ash *	469 Dogwood
349 Ash Tank 1 *	471 Dogwood Tank 2
353 Ash Tank 1 *	471 Dogwood Tank 3
362 Aspen *	475 Dogwood Tank 1
376 Aspen '	475 Dogwood Tank 2
380 Aspen *	516 Laurel Bay Tank 1 (UST#03747)
383 Aspen Tank 2 4	518 Laurel Bay

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks) cont.

531 Laurel Bay	1219 Cardinal	
532 Laurel Bay	1272 Albatross	
635 Dahlia Tank 2	1305 Eagle	
638 Dahlia	1353 Cardinal	
640 Dahlia Tank 1	1356 Cardinal	
640 Dahlia Tank 2	1357 Cardinal	
645 Dahlia	1359 Cardinal	
647 Dahlia	1360 Cardinal	
648 Dahlia Tank 2	1361 Cardinal	
650 Dahlia Tank 1	1368 Cardinal	
650 Dahlia Tank 2	1370 Cardinal Tank 1	
652 Dahlia Tank 1	1377 Dove	
652 Dahlia Tank 2	1381 Dove	
760 Althea	1382 Dove	
763 Althea	1384 Dove	
771 Althea	1385 Dove	
927 Albacore	1389 Dove	
1015 Foxglove	1391 Dove	
1046 Gardenia	1392 Dove	
1062 Gardenia Tank 2	1393 Dove Tank 1	
1070 Heather	1393 Dove Tank 2	
1072 Heather	1406 Eagle	
1102 Iris Tank 1	1407 Eagle Tank 1	
1107 Iris	1411 Eagle Tank 1	
1126 Iris	1411 Eagle Tank 2	
1129 Iris	1412 Eagle	
1132 Iris	1413 Albatross	
1133 Iris Tank 1	1414 Albatross	
1138 Iris	1422 Albatross	
1144 Iris Tank 1	1425 Albatross	
1144 Iris Tank 2	1426 Albatross	
1148 Iris Tank 1	1432 Dove	
1148 Iris Tank 2	1434 Dove	
1161 Jasmine	1436 Dove	
1167 Jasmine	1438 Dove Tank 1	
1170 Jasmine	1440 Dove	
1190 Bobwhite	1442 Dove Tank 1	
1192 Bobwhite		

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

February 22, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-May and June 2015 Laurel Bay Military Housing Area Multiple Properties Dated October 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the addresses attached. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 52 stated addresses. For the remaining 91 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

LINT

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016

Draft Final Initial Groundwater Investigation Report for (143 addresses)

Permanent Monitoring Well Investigation recommendation (52 addresses)		
273 Birch Drive	1192 Bobwhite Drive	
325 Ash Street	1194 Bobwhite Drive	
326 Ash Street	1272 Albatross Drive	
336 Ash Street	1352 Cardinal Lane	
343 Ash Street	1356 Cardinal Lane	
353 Ash Street	1359 Cardinal Lane	
430 Elderberry Drive	1360 Cardinal Lane	
440 Elderberry Drive	1362 Cardinal Lane	
456 Elderberry Drive	1370 Cardinal Lane	
458 Elderberry Drive	1382 Dove Lane	
468 Dogwood Drive	1384 Dove lane	
518 Laurel Bay Blvd	1385 Dove Lane	
635 Dahlia Drive	1389 Dove Lane	
638 Dahlia Drive	1392 Dove Lane	
640 Dahlia Drive	1393 Dove Lane	
647 Dahlia Drive	1407 Eagle Lane	
648 Dahlia Drive	1411 Eagle Lane	
650 Dahlia Drive	1418 Albatross Drive	
652 Dahlia Drive	1420 Albatross Drive	
760 Althea Street	1426 Albatross Drive	
1102 Iris Lane	1429 Albatross Drive	
1132 Iris Lane	1434 Dove Lane	
1133 Iris Lane	1436 Dove Lane	
1144 Iris Lane	1440 Dove Lane	
1148 Iris Lane	1442 Dove Lane	
1186 Bobwhite Drive	1444 Dove Lane	
No Further Action recommendation (91 addresses):		
137 Laurel Bay Blvd	771 Althea Street	
139 Laurel Bay Blvd	927 Albacore Street	
229 Cypress Street	1015 Foxglove Street	
261 Beech Street	1046 Gardenia Drive	
276 Birch Drive	1062 Gardenia Drive	
278 Birch Drive	1070 Heather Street	
291 Birch Drive	1072 Heather Street	

300 Ash Street	1107 Iris Lane
304 Ash Street	1126 Iris Lane
314 Ash Street	1129 Iris Lane
322 Ash Street	1138 Iris Lane
323 Ash Street	1161 Jasmine Street
324 Ash Street	1167 Jasmine Street
339 Ash Street	1170 Jasmine Street
344 Ash Street	1190 Bobwhite Drive
348 Ash Street	1219 Cardinal Lane
349 Ash Street	1305 Eagle Lane
362 Asnen Street	1353 Cardinal Lane
376 Aspen Street	1354 Cardinal Lane
380 Aspen Street	1357 Cardinal Lane
383 Aspen Street	1361 Cardinal Lane
387 Acom Drive	1364 Cardinal Lane
392 Acom Drive	1368 Cardinal Lane
396 Acom Drive	1377 Dove Lane
433 Elderberry Drive	1381 Dove Lane
439 Elderberry Drive	1391 Dove Lane
442 Elderberry Drive	1403 Eagle Lane
443 Elderberry Drive	1404 Eagle Lane
444 Elderberry Drive	1405 Eagle Lane
445 Elderberry Drive	1406 Eagle Lane
446 Elderberry Drive	1408 Eagle Lane
448 Elderberry Drive	1410 Eagle Lane
449 Elderberry Drive	1412 Eagle Lane
451 Elderberry Drive	1413 Albatross Drive
453 Elderberry Drive	1414 Albatross Drive
464 Dogwood Drive	1417 Albatross Drive
466 Dogwood Drive	1421 Albatross Drive
467 Dogwood Drive	1422 Albatross Drive
469 Dogwood Drive	1425 Albatross Drive
471 Dogwood Drive	1427 Albatross Drive
475 Dogwood Drive	1430 Dove Lane
516 Laurel Bay Blvd	1432 Dove Lane
531 Laurel Bay Blvd	1438 Dove Lane
532 Laurel Bay Blvd	1453 Cardinal Lane
645 Dablia Drive	1455 Cardinal Lane
763 Althea Street	

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016, Page 2